Online Neural Network
Neural Network implementation using Hedge Backpropagation based on Online Deep Learning: Learning Deep Neural Networks on the Fly1.
Parameters
- max_num_hidden_layers(Default
10
) → The maximum number of hidden layers - qtd_neuron_hidden_layer(Default:
32
) → Hidden dimension of the intermediate neural network layers. - n_classes(
int
) → Number of classes. - b(Default:
0.99
) → Discounting parameter in the hedge backprop algorithm. - n(Default:
0.01
) → Learning rate parameter in the hedge backprop algorithm. - s(Default:
0.2
) → Smoothing parameter in the hedge backprop algorithm.
Example Usage
We can create an instance and deploy ONN model like this.
import turboml as tb
model = tb.ONN(n_classes=2)
Footnotes
-
D. Sahoo, Q. Pham, J. Lu and S. Hoi. Online Deep Learning: Learning Deep Neural Networks on the Fly (opens in a new tab) ↩