HeteroLeveragingBaggingClassifier
Similar to LeveragingBaggingClassifier, but instead of multiple copies of the same model, it can work with different base models.
Parameters
-
base_models(
list[Model]
) → The list of classifier models. -
n_classes(
int
) → The number of classes for the classifier. -
w(
float
, Default:6
) → Indicates the average number of events. This is the lambda parameter of the Poisson distribution used to compute the re-sampling weight. -
bagging_method(
str
, Default:bag
) → The bagging method to use. Can be one of the following:bag
- Leveraging Bagging using ADWIN.me
- Assigns if sample is misclassified, otherwise.half
- Use resampling without replacement for half of the instances.wt
- Resample without taking out all instances.subag
- Resampling without replacement.
-
seed(
int
|None
, Default:None
) → Random number generator seed for reproducibility.
Example Usage
We can create an instance and deploy LBC model like this.
import turboml as tb
model = tb.HeteroLeveragingBaggingClassifier(n_classes=2, base_models = [tb.HoeffdingTreeClassifier(n_classes=2), tb.AMFClassifier(n_classes=2)])