HeteroAdaBoostClassifier
Similar to AdaBoostClassifier, but instead of multiple copies of the same model, it can work with different base models.
Parameters
-
base_models(
list[Model]
) → The list of classifier models. -
n_classes(
int
) → The number of classes for the classifier. -
seed(
int
, Default:0
) → Random number generator seed for reproducibility.
Example Usage
We can create an instance and deploy AdaBoostClassifier model like this.
import turboml as tb
model = tb.HeteroAdaBoostClassifier(n_classes=2, base_models = [tb.HoeffdingTreeClassifier(n_classes=2), tb.AMFClassifier(n_classes=2)])